Research Article | Open Access
Volume 2021 |Article ID 9834746 | https://doi.org/10.34133/2021/9834746

Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP)

Talukder Zaki JuberyiD ,1 Clayton N. CarleyiD ,2 Arti Singh,2 Soumik SarkariD ,1 Baskar Ganapathysubramanian iD ,1 and Asheesh K. Singh iD 2

1Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
2Department of Agronomy, Iowa State University, Ames, IA, USA

Received 
12 Oct 2020
Accepted 
21 Jun 2021
Published
28 Jul 2021

Abstract

Nodules form on plant roots through the symbiotic relationship between soybean (Glycine max L. Merr.) roots and bacteria (Bradyrhizobium japonicum) and are an important structure where atmospheric nitrogen (N2) is fixed into bioavailable ammonia (NH3) for plant growth and development. Nodule quantification on soybean roots is a laborious and tedious task; therefore, assessment is frequently done on a numerical scale that allows for rapid phenotyping, but is less informative and suffers from subjectivity. We report the Soybean Nodule Acquisition Pipeline (SNAP) for nodule quantification that combines RetinaNet and UNet deep learning architectures for object (i.e., nodule) detection and segmentation. SNAP was built using data from 691 unique roots from diverse soybean genotypes, vegetative growth stages, and field locations and has a good model fit (). SNAP reduces the human labor and inconsistencies of counting nodules, while acquiring quantifiable traits related to nodule growth, location, and distribution on roots. The ability of SNAP to phenotype nodules on soybean roots at a higher throughput enables researchers to assess the genetic and environmental factors, and their interactions on nodulation from an early development stage. The application of SNAP in research and breeding pipelines may lead to more nitrogen use efficiency for soybean and other legume species cultivars, as well as enhanced insight into the plant-Bradyrhizobium relationship.

© 2019-2023   Plant Phenomics. All rights Reserved.  ISSN 2643-6515.

Back to top