1Institute of Applied Remote Sensing and Information Technology, Zhejiang University, Hangzhou 310058, China
2Jiangsu Radio Scientific Institute Co., Ltd., Wuxi 214073, China
3Innovation Institute of Disaster Prevention and Reduction at Inner Mongolia, Huhhot 010051, China
4Institute of Spatial Information Technique, Zhejiang University, Hangzhou 310027, China
5Electrical Engineering and Computer Science, University of California, Merced, CA 95343, USA
Received 13 May 2020 |
Accepted 30 Aug 2020 |
Published 06 Oct 2020 |
Crop-type identification is one of the most significant applications of agricultural remote sensing, and it is important for yield estimation prediction and field management. At present, crop identification using datasets from unmanned aerial vehicle (UAV) and satellite platforms have achieved state-of-the-art performances. However, accurate monitoring of small plants, such as the coffee flower, cannot be achieved using datasets from these platforms. With the development of time-lapse image acquisition technology based on ground-based remote sensing, a large number of small-scale plantation datasets with high spatial-temporal resolution are being generated, which can provide great opportunities for small target monitoring of a specific region. The main contribution of this paper is to combine the binarization algorithm based on OTSU and the convolutional neural network (CNN) model to improve coffee flower identification accuracy using the time-lapse images (i.e., digital images). A certain number of positive and negative samples are selected from the original digital images for the network model training. Then, the pretrained network model is initialized using the VGGNet and trained using the constructed training datasets. Based on the well-trained CNN model, the coffee flower is initially extracted, and its boundary information can be further optimized by using the extracted coffee flower result of the binarization algorithm. Based on the digital images with different depression angles and illumination conditions, the performance of the proposed method is investigated by comparison of the performances of support vector machine (SVM) and CNN model. Hence, the experimental results show that the proposed method has the ability to improve coffee flower classification accuracy. The results of the image with a 52.5° angle of depression under soft lighting conditions are the highest, and the corresponding Dice (F1) and intersection over union (IoU) have reached 0.80 and 0.67, respectively.