1Bio-Sensing and Instrumentation Laboratory, College of Engineering, The University of Georgia, Athens, USA
2Phenomics and Plant Robotics Center, The University of Georgia, Athens, USA
Received 22 Dec 2021 |
Accepted 25 Apr 2022 |
Published 17 Jun 2022 |
Manual assessments of plant phenotypes in the field can be labor-intensive and inefficient. The high-throughput field phenotyping systems and in particular robotic systems play an important role to automate data collection and to measure novel and fine-scale phenotypic traits that were previously unattainable by humans. The main goal of this paper is to review the state-of-the-art of high-throughput field phenotyping systems with a focus on autonomous ground robotic systems. This paper first provides a brief review of nonautonomous ground phenotyping systems including tractors, manually pushed or motorized carts, gantries, and cable-driven systems. Then, a detailed review of autonomous ground phenotyping robots is provided with regard to the robot’s main components, including mobile platforms, sensors, manipulators, computing units, and software. It also reviews the navigation algorithms and simulation tools developed for phenotyping robots and the applications of phenotyping robots in measuring plant phenotypic traits and collecting phenotyping datasets. At the end of the review, this paper discusses current major challenges and future research directions.